Sains Malaysiana 52(8)(2023): 2353-2375

http://doi.org/10.17576/jsm-2023-5208-14

 

Enhancing Arsenate Removal Efficiency using Seawater Bittern-Derived MgO Nanoparticles/PVDF-HFP Electrospun Nanofibre Composites

(Meningkatkan Kecekapan Penyingkiran Arsenat menggunakan Nanopartikel Air Laut Terbitan-Bittern MgO/Komposit Nanozarah Elektroputaran PVDF-HFP)

 

ASNAN RINOVIAN1,5,*, MUHAMAD NASIR2, MUHAMMAD ALI ZULFIKAR3, SWASMI PURWAJANTI2, NUGRAHA1,4, NURRAHMI HANDAYANI2,3, I GUSTI AGUNG SURADHARMIKA6 & FITRI DARA2

 

1Master Program in Nanotechnology, Institut Teknologi Bandung, 40132, Bandung, Indonesia

2Research Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), 40135, Bandung, Indonesia

3Department of Chemistry, Institut Teknologi Bandung, 40132, Bandung, Indonesia

4Department of Engineering Physics, Institut Teknologi Bandung, 40132, Bandung, Indonesia

5Research Center for Mining Technology, National Research and Innovation Agency (BRIN), 35361, Lampung, Indonesia

6Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), 15314, Banten, Indonesia

 

Diserahkan: 30 Mei 2023/Diterima: 13 Julai 2023

 

Abstract

MgO nanoparticles (MgO NPs) incorporated PVDF-HFP nanofibers have been synthesized using the electrospinning method to remove arsenic from polluted water. MgO nanoparticles were synthesized from seawater bitterns and used as magnesium precursors. The synthesized materials were characterized using various techniques, and their adsorption capacities were evaluated against arsenic under different conditions. The results showed that the maximum adsorption for As(V) adsorption was 41.47 mg g-1 for PVDF-HFP/MgO 30% (w/w), which equals 179.69 mg g-1 based on the weight of bare MgO NPs and achieved at pH 11, a contact time of 420 minutes, and an adsorbent weight of 0.0125 g. Incorporating MgO NPs into the nanofiber matrix can enhance its stability, further increase the adsorption capacity. This study demonstrates the potential of using PVDF-HFP/MgO nanofiber composites to treat arsenic-containing wastewater and further provide commercial benefits for seawater bitterns by serving as a precursor for producing functional nanomaterials.

 

Keywords: Arsenic removal; MgO nanoparticles; nanofiber composites; PVDF-HFP nanofibers; seawater bittern

 

Abstrak

Nanozarah MgO (MgO NPs) yang tergabung PVDF-HFP nanozarah telah disintesis menggunakan kaedah pemintalan elektrik untuk mengeluarkan arsenik daripada air tercemar.Nanozarah MgO telah disintesis daripada bittern air laut dan digunakan sebagai prekursor magnesium. Bahan yang disintesis telah dicirikan menggunakan pelbagai teknik dan kapasiti penjerapannya dinilai terhadap arsenik di bawah keadaan yang berbeza. Hasil menunjukkan bahawa penjerapan maksimum bagi penjerapan As(V) ialah 41.47 mg g-1 untuk PVDF-HFP/MgO 30% (w/w) yang bersamaan dengan 179.69 mg g-1 berdasarkan berat NP MgO kosong dan dicapai pada pH 11, masa sentuhan 420 minit dan berat penjerap 0.0125 g. Mencampurkan NP MgO ke dalam matriks nanozarah boleh meningkatkan kestabilannya, seterusnya meningkatkan kemampuan penjerapan. Kajian ini menunjukkan potensi penggunaan komposit nanozarah PVDF-HFP/MgO untuk merawat air sisa yang mengandungi arsenik dan seterusnya memberikan faedah komersial untuk bittern air laut dengan berfungsi sebagai pendahulu untuk menghasilkan bahan nano berfungsi.

 

Kata kunci: Bittern air laut; komposit nanozarah; nanopartikel MgO; penyingkiran arsenik; PVDF-HFP nanozarah

 

RUJUKAN

Amaro-Gahete, J., Benítez, A., Otero, R., Esquivel, D., Jiménez-Sanchidrián, C., Morales, J., Caballero, Á. & Romero-Salguero, F.J. 2019. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method. Nanomaterials 9(2): 152. https://doi.org/10.3390/nano9020152

Anam Ansari, Abad Ali, Mohd Asif & Shamsuzzaman. 2018. Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New Journal of Chemistry 42(1): 184-197. https://doi.org/10.1039/c7nj03742b

Apriani, Mirna, Wahyono Hadi & Ali Masduqi. 2018. Physicochemical properties of sea water and bittern in Indonesia: Quality improvement and potential resources utilization for marine environmental sustainability. Journal of Ecological Engineering 19(3): 1-10. https://doi.org/10.12911/22998993/86150

Araujo, P.T., Terrones, M. & Dresselhaus, M.S. 2012. Defects and impurities in graphene-like materials. Materials Today 15(3): 98-109.

Arshid Bashir, Lateef Ahmad Malik, Sozia Ahad, Taniya Manzoor, Mudasir Ahmad Bhat, G.N. Dar & Altaf Hussain Pandith. 2019. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environmental Chemistry Letters Springer. https://doi.org/10.1007/s10311-018-00828-y

Babaee, Y., Mulligan, C.N. & Rahaman, M.S. 2018. Removal of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. Journal of Chemical Technology and Biotechnology 93(1): 63-71. https://doi.org/10.1002/jctb.5320

Che Othman, F.E., Yusof, N., Jaafar, J., Ismail, A.F., Hasbullah, H., Abdullah, N. & Ismail, M.S. 2016. Preparation and characterization of polyacrylonitrile/manganese dioxides- based carbon nanofibers via electrospinning process. In IOP Conference Series: Earth and Environmental Science. 36: 012006. https://doi.org/10.1088/1755-1315/36/1/012006

Cheng, H., Hu, Y., Luo, J., Xu, B. & Zhao, J. 2009. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials 165(1-3): 13-26. https://doi.org/10.1016/j.jhazmat.2008.10.070

Cheng, W., Zhang, W., Hu, L., Ding, W., Wu, F. & Li, J. 2016. Etching synthesis of iron oxide nanoparticles for adsorption of arsenic from water. RSC Advances 6(19): 15900-15910. https://doi.org/10.1039/c5ra26143k

Cruz, G.J.F., Mondal, D., Rimaycuna, J., Soukup, K., Gómez, M.M., Solis, J.L. & Lang, J. 2020. Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water. Journal of Environmental Chemical Engineering 8(3). https://doi.org/10.1016/j.jece.2020.103800

D. Perez, J.V., Nadres, E.T., Nguyen, H.N., P. Dalida, M.L. & Rodrigues, D.F. 2017. Response surface methodology as a powerful tool to optimize the synthesis of polymer-based graphene oxide nanocomposites for simultaneous removal of cationic and anionic heavy metal contaminants. RSC Advances 7(30): 18480-18490. https://doi.org/10.1039/c7ra00750g

Davies, P.A. & Knowles, P.R. 2006. Seawater bitterns as a source of liquid desiccant for use in solar-cooled greenhouses. Desalination 196(1-3): 266-279. https://doi.org/10.1016/j.desal.2006.03.010

De Gisi, S., Lofrano, G., Grassi, M. & Notarnicola, M. 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies 9: 10-40. https://doi.org/10.1016/j.susmat.2016.06.002

Delavar, M., Bakeri, Gh., Hosseini, M. & Nabian, N. 2021. Synthesis and application of titania nanotubes and hydrous manganese oxide in heavy metal removal from aqueous solution: Characterization, comparative study, and adsorption kinetics. Theoretical Foundations of Chemical Engineering 55(1): 180-197. https://doi.org/10.1134/S004057952101005X

Dong, J., Xu, F., Dong, Z., Zhao, Y., Yan, Y., Jin, H. & Li, Y. 2018. Fabrication of two dual-functionalized covalent organic polymers through heterostructural mixed linkers and their use as cationic dye adsorbents. RSC Advances 8(34): 19075-19084. https://doi.org/10.1039/c8ra01968a

Fiol, N. & Villaescusa, I. 2009. Determination of sorbent point zero charge: Usefulness in sorption studies. Environmental Chemistry Letters 7(1): 79-84. https://doi.org/10.1007/s10311-008-0139-0

Fiyadh, S.S., AlSaadi, M.A., Jaafar, W.Z., AlOmar, M.K., Fayaed, S.S., Mohd, N.S., Lai, S.H. & El-Shafie, A. 2019. Review on heavy metal adsorption processes by carbon nanotubes. Journal of Cleaner Production 230: 783-793. https://doi.org/10.1016/j.jclepro.2019.05.154

Gopakumar, D.A., Pasquini, D., Henrique, M.A., De Morais, L.C., Grohens, Y. & Thomas, S. 2017. Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal. ACS Sustainable Chemistry and Engineering 5(2): 2026-2033. https://doi.org/10.1021/acssuschemeng.6b02952

Guo, J., Yan, C., Luo, Z., Fang, H., Hu, S. & Cao, Y. 2019. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium(II) and arsenic(V) adsorption. Journal of Environmental Sciences (China) 85: 168-176. https://doi.org/10.1016/j.jes.2019.06.004

Guo, Q., Li, Y., Wei, X.Y., Zheng, L.W., Li, Z.Q., Zhang, K.G. & Yuan, C.G. 2021. Electrospun metal-organic frameworks hybrid nanofiber membrane for efficient removal of As(III) and As(V) from water. Ecotoxicology and Environmental Safety 228: 112990. https://doi.org/10.1016/j.ecoenv.2021.112990

Guo, L., Lei, R., Zhang, T.C., Du, D. & Zhan, W. 2022. Insight into the role and mechanism of polysaccharide in polymorphous magnesium oxide nanoparticle synthesis for arsenate removal. Chemosphere 296: 133878. https://doi.org/10.1016/j.chemosphere.2022.133878

Gupta, K., Joshi, P., Gusain, R. & Khatri, O.P. 2021. Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coordination Chemistry Reviews 445: 214100. https://doi.org/10.1016/j.ccr.2021.214100

Gupta, R., Kumar, R., Sharma, A. & Verma, N. 2015. Novel Cu-carbon nanofiber composites for the counter electrodes of dye-sensitized solar cells. International Journal of Energy Research 39(5): 668-680. https://doi.org/10.1002/er.3279

He, Q., Li, X. & Ren, Y. 2022. Analysis of the simultaneous adsorption mechanism of ammonium and phosphate on magnesium-modified biochar and the slow release effect of fertiliser. Biochar 4: 25. https://doi.org/10.1007/s42773-022-00150-5

Huling, J., Götz, A., Grabow, N. & Illner, S. 2022. GIFT: An ImageJ macro for automated fiber diameter quantification. PLoS ONE 17(10): e0275528. https://doi.org/10.1371/journal.pone.0275528

Ibrahim, H.M. & Klingner, A. 2020. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing 90: 106647. https://doi.org/10.1016/j.polymertesting.2020.106647

Jabar, J.M., Odusote, Y.A., Alabi, K.A. & Ahmed, I.B. 2020. Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Applied Water Science 10: 136. https://doi.org/10.1007/s13201-020-01221-3

Kumar, M., Nandi, M. & Pakshirajan, K. 2021. Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. Journal of Environmental Management 278 (Part 2): 111555. https://doi.org/10.1016/j.jenvman.2020.111555

Kwok, K.C.M., Koong, L.F., Al Ansari, T. & McKay, G. 2018. Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environmental Science and Pollution Research 25(15): 14734-14742. https://doi.org/10.1007/s11356-018-1501-9

Kwok, K.C.M., Koong, L.F., Al Ansari, T. & McKay, G. 2018. Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environmental Science and Pollution Research 25(15): 14734-14742. https://doi.org/10.1007/s11356-018-1501-9

Laili, Zalina, Muhamad Samudi Yasir, Muhamat Omar, Mohd Zaidi Ibrahim, and Esther Philip. 2010. Influence of humic acids on radium adsorption by coir pith in aqueous solution. Sains Malaysiana 39(1): 99-106.

Liao, J., Zhang, Y., He, X., Zhang, L. & He, Z. 2021. The synthesis of a novel titanium oxide aerogel with highly enhanced removal of uranium and evaluation of the adsorption mechanism. Dalton Transactions 50(10): 3616-3628. https://doi.org/10.1039/d0dt04320f

Lim, J., Kim, D.J., Cho, H. & Kim, J. 2022. Design of novel seawater bittern recovery process for CO2 and SOx utilization. Desalination 540. https://doi.org/10.1016/j.desal.2022.115995

Lin, S., Tang, J., Zhang, W., Zhang, K., Chen, Y., Gao, R., Yin, H., Yu, X. & Qin, L.C. 2022. Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors. RSC Advances 12(20): 12590-12599. https://doi.org/10.1039/d2ra01658c

Luo, J., Meng, X., Crittenden, J., Qu, J., Hu, C., Liu, H. & Peng, P. 2018. Arsenic adsorption on Α-MnO2 nanofibers and the significance of (1 0 0) facet as compared with (1 1 0). Chemical Engineering Journal 331: 492-500. https://doi.org/10.1016/j.cej.2017.08.123

Luo, X. & Deng, F. 2019. Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier.

Manuel Stephan, A. & Nahm, K.S. 2006. Review on composite polymer electrolytes for lithium batteries. Polymer 47(16): 5952-5964. https://doi.org/10.1016/j.polymer.2006.05.069

Mao, Y., Liu, K., Zhan, C., Geng, L., Chu, B. & Hsiao, B.S. 2017. Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. Journal of Physical Chemistry B 121(6): 1340-1351. https://doi.org/10.1021/acs.jpcb.6b11425

Meena, M., Sonigra, P. & Yadav, G. 2021. Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals. Environmental Science and Pollution Research 28(3): 2485-2508. https://doi.org/10.1007/s11356-020-11112-4

Mohammadian, S., Krok, B., Fritzsche, A., Bianco, C., Tosco, T., Cagigal, E., Mata, B., Gonzalez, V., Diez-Ortiz, M., Ramos, V., Montalvo, D., Smolders, E., Sethi, R. & Meckenstock, R.U. 2021. Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater. Journal of Contaminant Hydrology 237: 103741. https://doi.org/10.1016/j.jconhyd.2020.103741

Nandiyanto, Asep Bayu Dani, Risti Ragadhita & Jumril Yunas. 2020. Adsorption isotherm of densed monoclinic tungsten trioxide nanoparticles. Sains Malaysiana 49(12): 2881-2890. https://doi.org/10.17576/jsm-2020-4912-01

Ng, J. (Jack), A. Gomez-Caminero, Inter-Organization Programme for the Sound Management of Chemicals, and International Program on Chemical Safety. 2001. Arsenic and Arsenic Compounds. World Health Organization.

Noor Halini Baharim, Fridelina Sjahrir, Rahmad Mohd Taib, Norazlina Idris & Tuan Azmar Tuan Daud. 2023. Methylene blue adsorption by acid post-treated low temperature biochar derived from banana (Musa acuminata) pseudo stem. Sains Malaysiana 52(2): 547-561. https://doi.org/10.17576/jsm-2023-5202-17

Peydayesh, M., Suta, T., Usuelli, M., Handschin, S., Canelli, G., Bagnani, M. & Mezzenga, R. 2021. Sustainable removal of microplastics and natural organic matter from water by coagulation-flocculation with protein amyloid fibrils. Environmental Science and Technology 55(13): 8848-8858. https://doi.org/10.1021/acs.est.1c01918

Pi, H., Wang, R., Ren, B., Zhang, X. & Wu, J. 2018. Facile fabrication of multi-structured SiO2@PVDF-HFP nanofibrous membranes for enhanced copper ions adsorption. Polymers 10(12): 1385. https://doi.org/10.3390/polym10121385

Pramanik, S., Sahu, S.K., Meshram, P. & Pandey, B.D. 2014. Arsenic removal from spent liquor generated during processing of vanadium sludge. Advanced Materials Research 828: 55-63. https://doi.org/10.4028/www.scientific.net/AMR.828.55

Puguan, J.M.C., Chung, W.J. & Kim, H. 2016. Synthesis and characterization of electrospun PVdF-HFP/Silane-functionalized ZrO2 hybrid nanofiber electrolyte with enhanced optical and electrochemical properties. Solid State Sciences 62: 34-42. https://doi.org/10.1016/j.solidstatesciences.2016.10.010

Rahman, H.L., Erdem, H., Sahin, M. & Erdem, M. 2020. Iron-incorporated activated carbon synthesis from biomass mixture for enhanced arsenic adsorption. Water, Air, and Soil Pollution 231: 6. https://doi.org/10.1007/s11270-019-4378-4

Ramlah Abd Rashid, Ali H. Jawad, Mohd Azlan Bin Mohd Ishak & Nur Nasulhah Kasim. 2018. FeCl3-activated carbon developed from coconut leaves: Characterization and application for methylene blue removal. Sains Malaysiana 47(3): 603-610. https://doi.org/10.17576/jsm-2018-4703-22

Saif, S., Tahir, A., Asim, T., Chen, Y. & Adil, S.F. 2019. Polymeric nanocomposites of iron-oxide nanoparticles (IONPs) synthesized using Terminalia chebula leaf extract for enhanced adsorption of arsenic(v) from water. Colloids and Interfaces 3(1): 17. https://doi.org/10.3390/colloids3010017

Saod, W.M., Oliver, I.W., Thompson, D.F., Holborn, S., Contini, A. & Zholobenko, V. 2023. Magnesium oxide loaded mesoporous silica: Synthesis, characterisation and use in removing lead and cadmium from water supplies. Environmental Nanotechnology, Monitoring and Management 20: 100817. https://doi.org/10.1016/j.enmm.2023.100817

Schroeder, A.B., Dobson, E.T.A., Rueden, C.T., Tomancak, P., Jug, F. & Eliceiri, K.W. 2021. The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis. Protein Science 30(1): 234-249. https://doi.org/10.1002/pro.3993

Shafiq, M., Alazba, A.A. & Amin, M.T. 2018. Removal of heavy metals from wastewater using date palm as a biosorbent: A comparative review. Sains Malaysiana 47(1): 35-49. https://doi.org/10.17576/jsm-2018-4701-05

Shi, H., Chen, F., Fu, L., Zhao, S., Zhang, W., Chen, F. & Shi, Q. 2021. Preparation of nano-iron loaded cassava fibre composite material for hexavalent chromium removal. Sains Malaysiana 50(11): 3373-3382. https://doi.org/10.17576/jsm-2021-5011-21

Singh, K.P., Gupta, S., Singh, A.K. & Sinha, S. 2011. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials 186(2-3): 1462-1473. https://doi.org/10.1016/j.jhazmat.2010.12.032

Sinha Ray, S., Lee, H.K., Huyen, D.T.T., Park, Y.I., Park, H., Nam, S.E., Kim, I.C. & Kwon, Y.N. 2021. Fluorine-free anti-droplet surface modification by hexadecyltrimethoxysilane-modified silica nanoparticles-coated carbon nanofibers for self-cleaning applications. Progress in Organic Coatings 153: 106165. https://doi.org/10.1016/j.porgcoat.2021.106165

Siti Zu Nurain Ahmad, Wan Norharyati Wan Salleh, Norhaniza Yusof, Mohd Zamri Mohd Yusop, Rafidah Hamdan, Nor Asikin Awang, Nor Hafiza Ismail, Norafiqah Rosman, Norazlianie Sazali & Ahmad Fauzi Ismail. 2021. Pb(II) removal and its adsorption from aqueous solution using zinc oxide/graphene oxide composite. Chemical Engineering Communications 208(5): 646-660. https://doi.org/10.1080/00986445.2020.1715957

Su, Y., Burger, C., Hsiao, B.S. & Chu, B. 2014. Characterization of TEMPO-Oxidized cellulose nanofibers in aqueous suspension by small-angle x-ray scattering. Journal of Applied Crystallography 47(2): 788-798. https://doi.org/10.1107/S1600576714005020

Tibolla, H., Pelissari, F.M. & Menegalli, F.C. 2014. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT 59(2P2): 1311-1318. https://doi.org/10.1016/j.lwt.2014.04.011

Torasso, N., Vergara-Rubio, A., Rivas-Rojas, P., Huck-Iriart, C., Larrañaga, A., Fernández-Cirelli, A., Cerveny, S. & Goyanes, S. 2021. Enhancing arsenic adsorption via excellent dispersion of iron oxide nanoparticles inside poly(vinyl alcohol) nanofibers. Journal of Environmental Chemical Engineering 9(1): 104664. https://doi.org/10.1016/j.jece.2020.104664

Tripathy, M. & Hota, G. 2020. Maghemite and graphene oxide embedded polyacrylonitrile electrospun nanofiber matrix for remediation of arsenate ions. ACS Applied Polymer Materials 2(2): 604-617. https://doi.org/10.1021/acsapm.9b00982

Unuabonah, E.I., Omorogie, M.O. & Oladoja, N.A. 2018. Modeling in adsorption: Fundamentals and applications. In Composite Nanoadsorbents, edited by Kyzas, G.Z. & Mitropoulus, A.C. Elsevier. pp. 85-118. https://doi.org/10.1016/B978-0-12-814132-8.00005-8

Veerabhadraiah, A., Ramakrishna, S., Angadi, G., Venkatram, M., Ananthapadmanabha, V.K., NarayanaRao, N.M.H. & Munishamaiah, K. 2017. Development of polyvinyl acetate thin films by electrospinning for sensor applications. Applied Nanoscience (Switzerland) 7(7): 355-363. https://doi.org/10.1007/s13204-017-0576-9

Vo, D.T., Do, H.N., Nguyen, T.T., Nguyen, T.T.H., Tran, V.M., Okada, S. & Le, M.L.P. 2019. Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene). Materials Science and Engineering B: Solid-State Materials for Advanced Technology 241: 27-35. https://doi.org/10.1016/j.mseb.2019.02.007

Wang, Z., Sun, B., Lu, X., Wang, C. & Su, Z. 2019. Molecular orientation in individual electrospun nanofibers studied by polarized AFM-IR. Macromolecules 52(24): 9639-9645. https://doi.org/10.1021/acs.macromol.9b01778

Xie, X., Lu, C., Xu, R., Yang, X., Yan, L. & Su, C. 2022. Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism. Science of the Total Environment 806(Part 2): 150615. https://doi.org/10.1016/j.scitotenv.2021.150615

Xiong, C., Wang, W., Tan, F., Luo, F., Chen, J. & Qiao, X. 2015. Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. Journal of Hazardous Materials 299: 664-674. https://doi.org/10.1016/j.jhazmat.2015.08.008

Yalcinkaya, F., Yalcinkaya, B. & Jirsak, O. 2015. Dependent and independent parameters of needleless electrospinning. In Vlakna a Textil. Slovak University of Technology in Bratislava. pp. 75-79. https://doi.org/10.5772/65838

Yavari, M., Ebadi, F., Meloni, S., Wang, Z.S., Yang, T.C.J., Sun, S., Schwartz, H.,Wang, Z., Niesen, B., Durantini, J., Rieder, P., Tvingstedt, K., Buonassisi, T., Choy, W.C.H., Filippetti, A., Dittrich, T., Olthof, S., Correa-Baena, J-P. & Tress, W. 2019. How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. Journal of Materials Chemistry A 7(41): 23838-23853. https://doi.org/10.1039/c9ta01744e

Zhang, C.L. & Yu, S.H. 2014. Nanoparticles meet electrospinning: Recent advances and future prospects. Chemical Society Reviews 43(13): 4423-4448. https://doi.org/10.1039/c3cs60426h

Zhang, C., Uchikoshi, T., Ichinose, I. & Liu, L. 2019. Surface modification on cellulose nanofibers by TiO2 coating for achieving high capture efficiency of nanoparticles. Coatings 9(2): 139. https://doi.org/10.3390/COATINGS9020139

Zhang, H., Hu, J., Xie, J., Wang, S. & Cao, Y. 2019. A solid-state chemical method for synthesizing MgO nanoparticles with superior adsorption properties. RSC Advances 9(4): 2011-2017. https://doi.org/10.1039/C8RA09199D

Zhao, Y., Yuan, X., Li, X., Jiang, L. & Wang, H. 2021. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process. Journal of Hazardous Materials 409: 124893. https://doi.org/10.1016/j.jhazmat.2020.124893

Zhu, Y., Zheng, L., Liu, W., Qin, L. & Ngai, T. 2020. Poly(l-Lactic Acid) (PLLA)/MgSO4·7H2O composite coating on magnesium substrates for corrosion protection and cytocompatibility promotion. ACS Applied Bio Materials 3(3): 1364-1373. https://doi.org/10.1021/acsabm.9b00983

 

*Pengarang untuk surat-menyurat; email: asna002@brin.go.id

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya